Xenorhabdus japonica
 
Citrate
utilization
Esculin
hydrolysis
Catalase
meso-Inositol
fermentation
Salicin
fermentation
Ribose
fermentation
Lipase
Tween 80
X. beddingii
+
+
-
-
+
+
+
X. bovienii
+
-
-
d
-
+
+
X. japonica
-
-
-
-
-
-
-
X. nematophila
+
-
-
[+]
-
-
d
X. poinarii
+
d
-
-
-
-
+
Photorhabdus luminescens
+
+
+
+
-
+
+
Taxonomy
Morphology
Cultural characteristics
Biochemical characters
Ecology
Pathogenicity
References
Phylum Proteobacteria, Class Gammaproteobacteria, Order Enterobacterales, Family Morganellaceae, Genus Xenorhabdus,
Xenorhabdus  japonica
corrig. Nishimura et al. 1995.

Synonym:
Xenorhabdus japonicus Nishimura et al. 1995.
Gram-negative rods 0.3–2 x 2–10 μm, occasionally presenting filaments of 15–50 μm
in length. May produce crystalline inclusions. Motile by means of peritrichous flagella.
Swarming may occur.
Colonies may present phase variation. Pigmentation is yellowish brown.
Facultatively anaerobic, optimum growth temperature 28 ºC. No growth at 37 ºC. Grow
on media: Nutrient Agar or Nutrient Broth, Trypticase Soy Agar ± 5% sheep blood.
Isolated from Steinernema kushidai in Japan.
Undetermined.
  1. J. G. Holt et al., 1994. Facultatively Anaerobic Gram-Negative Rods. Subgroup 1. Family Enterobacteriaceae. In: Begey’s Manual of
    Determinative Bacteriology, 9th-edition, Williams & Wilkins, pp 175-189.
  2. Akhurst R.J. &  Boemare N.E.: A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed
    elevation of the subspecies of X. nematophilus to species. J. Gen. Microbiol., 1988, 134, 1835-1845.
  3. Lengyel K., Lang E., Fodor A., Szallas E., Schumann P. & Stackebrandt E.: Description of four novel species of Xenorhabdus,
    family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov.,
    and Xenorhabdus szentirmaii sp. nov. Syst. Appl. Microbiol., 2005, 28, 115-122.
  4. Nishimura Y., Hagiwara A., Suzuki T. & Yamanaka S.: Xenorhabdus japonicus sp. nov. associated with the nematode
    Steinernema kushidai. World J. Microbiol. Biotechnol., 1994, 10, 207-210.
  5. Thomas G.M. & Poinar Jr. G.O.: Xenorhabdus gen. nov., a genus of entomopathogenic nematophilic bacteria of the family
    Enterobacteriaceae. International Journal of Systematic Bacteriology, 1979, 29, 352-360.
  6. Poinar Jr. G.O. and Thomas G.M.: A new bacterium, Achromobacter nematophilus sp. nov. (Achromobacteriaceae: Eubacteriales)
    associated with a nematode. International Bulletin of Bacteriological Nomenclature and Taxonomy, 1965, 15, 249-252.
  7. Boemare N.E., Akhurst R.J., Mourant R.G.: DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria
    of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov,  
    1993, International Journal of Systematic Bacteriology. 43:(2) 249-255.
  8. Don J. Brenner and J.J. Farmer III, 2001. Family I. Enterobacteriaceae. In: Bergey’s Manual of Systematic Bacteriology, Second
    edition, Vol two, part B, George M. Garrity (Editor-in-Chief), pp 587-897.
  9. Euzeby J.P., List of  Prokaryotic names with Standing in Nomenclature - Genus Xenorhabdus, https://www.bacterio.cict.
    fr/xz/xenorhabdus.html
  10. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for
    Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov.,
    Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol
    2016; 66:5575-5599.
  11. Lengyel K, Lang E, Fodor A, Szallas E, Schumann P, Stackebrandt E. Description of four novel species of Xenorhabdus, family
    Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and
    Xenorhabdus szentirmaii sp. nov. Syst Appl Microbiol 2005; 28:115-122.
Positive results for methyl red, gelatin hydrolysis, acid production from: glucose (without gas production), fructose, glycerol, maltose,
D-mannose, N-acetylglucosamine and trehalose.
Can utilize (Biolog GN) N-acetyl-D-glucosamine, D-fructose, m-inositol, maltose, D-mannose, mono-methyl succinate, acetic acid,
D,L lactic acid, bromo-succinic acid, alanin-amide, L-alanyl-glycine, L-alanine, L-alanyl-glycine, L-histidine, D-serine, L-threonine,
uridine, thymidine, dextrin, alpha-D-glucose, D-trehalose, methyl-pyruvate, succinic acid, L-aspartic acid, L-asparagine, L-glutamic
acid, L-serine, glycerol, DL-alpha-glycerol phosphate, inosine and glucose-6-phosphate.
All the other Biolog GN tests are negative.

Negative results for catalase, oxidase, beta-galactosidase, arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase,
indole production, H
2S production, urea hydrolysis, Voges-Proskauer reaction, growth on KCN media, nitrate reduction, phenylalanine
deaminase, starch hydrolysis, acid production from: L-arabinose, adonitol, cellobiose, dulcitol, esculin, gluconate, lactose,
D-mannitol, melibiose, alpha-methyl-D-glucoside, D-sorbitol, raffinose, rhamnose, sucrose, xylose and other API 50CH tests.
(c) Costin Stoica
Antibiogram
Encyclopedia
Culture media
Biochemical tests
Stainings
Images
Movies
Articles
Identification
Software
R E G N U M
PROKARYOTAE
Legend:  + positive 90-100%, - negative 90-100%, [+] positive 75-89%, [-] negative 75-89%, d positive 25-74% of strains,
Differential characters of related species:
Previous page
Back