Escherichia marmotae
Taxonomy
Morphology
Cultural characteristics
Biochemical characters
Ecology
Pathogenicity
References
Phylum Proteobacteria, Class Gammaproteobacteria, Order Enterobacterales, Family Enterobacteriaceae, Genus Escherichia,  
Escherichia marmotae Liu et al. 2015.
Gram-negative, 0.5-1.5 x 2.0-6.0 μm, straight, bacilli or coccobacilli. Non-spore-
forming. Non-motile.
Aerobic, facultatively anaerobic. Optimum growth temperature 37 ºC. Grow readily on
simple nutrient media like Nutrient agar or nutrient broth. Produces lactose-negative
colonies on selective agar.
E. marmotae was isolated from the feces of wild Himalayan marmot (Marmota himalayana) and other marmot species (Alpine
marmot), faeces of beef cattle and sheep, from the diaphragm, mesenteric lymph nodes, colon content and carcass surface  of wild
boars, lungs of a wild bank vole (
Myodes glareolus), fresh fecal from healthy hens, urban crows, from external ear canal of canines and
canine milk, feline urine, red deer meat, human clinical samples (urinary tract, blood, pus, rectal swab, spondylodiscitis)  and from
aquatic environment. However, it is likely to be ubiquitous species, a generalist species like
E. coli. It can acquire broad-spectrum
beta-lactamases.
E. marmotae can cause invasive human infections, involving blood, bone, the urinary tract, the bile duct system as well as septic
shock. It can contain genotypic virulence traits associated with Escherichia pathogenicity (astA, ompA, fae, fim, csg, ent, fep, kpsM
etc). The strain isolated from healthy beef cattle harbours virulence factors related to ExPEC (F1 fimbriae, the K1 capsule, the protein
OMP) and to ETEC (F4 fimbriae and a heat-stable enterotoxin EAST1) and exhibits microbiological resistance to tetracycline and the β-
lactams ampicillin, cefotaxime, ceftazidime, cefepime.
E. marmotae was isolated from animal clinical samples, also (external ear
canal of canines and canine milk, feline urine).
  1. Liu S, Jin D, Lan R, Wang Y, Meng Q, Dai H, Lu S, Hu S, Xu J. Escherichia marmotae sp. nov., isolated from faeces of Marmota
    himalayana. Int J Syst Evol Microbiol 2015; 65:2130-2134.
  2. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for
    Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov.,
    Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016.
  3. Liu S, Feng J, Pu J, Xu X, Lu S et al., 2019. Genomic and molecular characterisation of Escherichia marmotae from wild rodents in
    Qinghai-Tibet plateau as a potential pathogen. Scientific Reports 9: 10619. Doi: 10.1038/s41598-019-46831-3.
  4. Ocejo M, Tello M, Oporto B, Lavin JL, Hurtado A, 2020. Draft genome sequence of Escherichia marmotae E690. isolated from beef
    cattle. Microbiol Resour Announc 9e00739-20. Doi: 10.128/MRA.00739-20.
  5. Sivertsen A, Dyrhovden R, Tellevik MG, Bruvold TS et al., 2022. Escherichia marmotae-a human pathogen easily misidentified as
    Escherichia coli. Microbiology Spectrum 10(2). doi: 10.1128/spectrum02035-21.
  6. Zhurilov PA, Andriyanov PA, Tutrina AI, Razheva IV et al., 2023. Characterization and comparative analysis of the Escherichia
    marmotae M-12 isolate from bank vole (Myodes glareolus). Scientific reports 13:13949. Doi: 10.1038/s41598-023-41223-0.
  7. Sakaguchi K., Tanabe M., Takizawa S, Kasahara S. et al., 2023. Zoonotic potential and antimicrobial resistance of Escherichia
    spp. in urban crows in Japan-first detection of E. marmotae and E. ruysiae. Comparative Immunology, Microbiology and Infectious
    Diseases 100, 102040.
  8. Siddi G., Piras F., Gymoese P., Torpdahl M. et al., 2024. Pathogenic profile and antimicrobial resistance of Escherichia coli,
    Escherichia marmotae and Escherichia ruysiae detected from hunted wild boars in Sardinia. International Journal of Food
    Microbiology 16, 421.
Positive results for catalase, beta-glucuronidase, lysine decarboxylase, nitrate reduction, acid production from: L-arabinose, fructose,
L-fucose, D-galactose, glycerol, glucose, gluconate (without gas production), maltose, D-mannitol, D-mannose,
N-acetylglucosamine, rhamnose, trehalose and D-xylose.

Negative results for arginine dihydrolase, esculin hydrolysis, H
2S production, indole production, ornithine decarboxylase, ONPG,
oxidase, urease, Voges-Proskauer reaction, gelatinase, citrate utilization, phenylalanine and acid production from: adonitol,
amygdalin, D- and L-arabitol, arbutin, cellobise, dulcitol, aesculin, D-fucose, glycogen, gentiobiose, 2- and 5-ketogluconate,
alpha-methyl-D-glucoside, methyl-alpha-D-mannoside, methyl-beta-D-xyloside, inositol, inulin, lactose, D-lyxose, melezitose,
raffinose, salicin, saccharose, starch, sorbose, D-tagatose, turanose, L-xylose and xylitol.

Variable results for beta-galactosidase, acid production from melibiose and sorbitol.
(c) Costin Stoica
Antibiogram
Encyclopedia
Culture media
Biochemical tests
Stainings
Images
Movies
Articles
Identification
Software
R E G N U M
PROKARYOTAE
Previous page
Back