Paraburkholderia nodosa
Description is based on Biolog GN2, API ID 32 GN, API ZYM and API 20 NE results.

Positive results for  acid and alkaline phosphatase, catalase, esterase C4, beta-galactosidase (PNPG - API 20 NE), leucine
arylamidase, naphthol-AS-BI-phosphohydrolase, nitrate reduction, oxidase and Tween 80 hydrolysis.
Can assimilate glucose, arabinose, mannose, mannitol, N-acetylglucosamine, gluconate, caprate, adipate, citrate, malate,  
phenylacetate, 5-ketogluconate, acetate, itaconate, propionate, DL-lactate, malonate, sucrose, sorbitol, glycogen, myo-inositol,
trehalose, erythritol & L-histidine.
Can oxidize (Biolog GN2) glycogen, Tween 40, Tween 80, N-acetyl-D-glucosamine, adonitol, arabinose, arabitol, cellobiose,
i-erythritol, D-fructose, L-fucose, D-galactose, alpha-D-glucose, myo-inositol, D-mannitol, D-mannose, D-psicose, L-rhamnose,
D-sorbitol, D-trehalose, xylitol, methyl pyruvate, acetic acid, citrate, formic acid, D-galactonic acid lactone, D-galacturonic acid,
D-gluconic acid, D-glucosaminic acid, beta-hydroxybutyric acid, p-hydroxyphenylacetic acid, alpha-ketoglutaric acid, DL-lactate, quinic
acid, D-saccharic acid, sebacic acid, succinic acid, bromosuccinic acid, succinamic acid, alaninamide, D- and L-alanine, L-alanyl
glycine, L-asparagine, L-aspartic acid, L-glutamic acid, glycyl L-aspartic acid, glycyl L-glutamic acid, L-histidine, L-leucine,
L-phenylalanine, L-proline, L-pyroglutamic acid, L-serine, gamma-aminobutyric acid & urocanic acid.

Negative results for cystine arylamidase, esculin hydrolysis, alpha-fucosidase, gelatin hydrolysis, alpha- and beta-galactosidase,
beta-glucuronidase, alpha- and beta-glucosidase, N-acetyl-beta-glucosaminidase, indole production, lipase C14,
alpha-mannosidase, trypsin, alpha-chymotrypsin, valine arylamidase & fermentation of glucose. No assimilation of  maltose.
No oxidation of alpha-cyclodextrin, dextrin, N-acetyl-D-galactosamine, gentiobiose, alpha-D-lactose, lactulose, maltose, D-melibiose,
methyl beta-D-glucoside, D-raffinose, sucrose, turanose, D-glucuronic acid, gamma-hydroxybutyric acid, itaconic acid,
alpha-hydroxybutyric acid, alpha-ketovaleric acid, malonic acid, glucuronamide, L-ornithine, inosine, uridine, thymidine,
2-aminoethanol, 2,3-butanediol, DL-alpha-glycerol phosphate & glucose 1-phosphate.

Variable results for the oxidation of monomethyl succinate, cis-aconitic acid, alpha-ketobutyric acid, propionic acid, hydroxy-L-proline,
D-serine, L-threonine, DL-carnitine, phenylethylamine, putrescine, glycerol & glucose 6-phosphate.
Taxonomy
Morphology
Cultural characteristics
Biochemical characters
Ecology
Pathogenicity
References
Phylum Proteobacteria, Class Betaproteobacteria, Order Burkholderiales, Family Burkholderiaceae, Genus Paraburkholderia,
Paraburkholderia nodosa
(Chen et al. 2007) Sawana et al. 2015.

Old synonym:
Burkholderia nodosa Chen et al. 2007.
Gram-negative rods, 0.5-0.8 x 0.8-2.2 μm. Motile. Non-spore-forming.
Grows at 28 and 30 ºC on yeast extract-mannitol agar and TSA, respectively. NaCl
range for growth is 0-3% (w/v). Aerobic. No growth on MacConkey agar.
Isolated from root nodules of Mimosa bimucronata and Mimosa scabrella. Can produce N2-fixing nodules on Mimosa species.
Susceptible to chloramphenicol, kanamycin, streptomycin, nalidixic acid, tetracycline, sulphamethoxazole+trimethoprim, gentamicin,
penicillin G, novobiocin and  ampicillin. Resistant to rifampicin.
Undetermined.
  1. Chen W.M., De Faria S.M., James E.K., Elliott G.N., Lin K.Y., Chou J.H., Sheu S.Y., Cnockaert M., Sprent J.I. and Vandamme P.:
    Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa
    scabrella. Int. J. Syst. Evol. Microbiol., 2007, 57, 1055-1059.
  2. Kang, S. R., Srinivasan, S. and Lee, S. S. 2014. Burkholderia eburnea sp. nov., isolated from peat soil. Int. J. Syst. Evol. Microbiol.,
    64, 1108-1115.
  3. Otsuka Y., Muramatsu Y., Nakagawa Y., Matsuda M., Nakamura M. and Murata H.: Burkholderia oxyphila sp. nov., a bacterium
    isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int. J. Syst. Evol. Microbiol., 2011,
    61, 249-254.
  4. Sheu S.Y., Chou J.H., Bontemps C., Elliott G.N., Gross E., Dos Reis Junior F.B., Melkonian R., Moulin L., James E.K., Sprent J.I.,
    Young J.P.W. and Chen W.M.: Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int. J. Syst. Evol.
    Microbiol., 2013, 63, 435-441.
  5. Sawana, A., Adeolu, M. and Gupta, R.S. 2014. Molecular signatures and phylogenomic analysis of the genus Burkholderia:
    proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus
    Paraburkholderia gen. nov. harboring environmental species. Front. Genet., 5, 429.
(c) Costin Stoica
Antibiogram
Encyclopedia
Culture media
Biochemical tests
Stainings
Images
Movies
Articles
Identification
Software
R E G N U M
PROKARYOTAE
Previous page
Back