Insect larvae pathogen (mosquito, Lepidoptera etc.) by toxins synthesis. Used as bio-
pesticide. Some strains of B. thuringiensis may produce the B. cereus diarrheal toxin.

Delta-endotoxins or insecticidal crystal proteins are protoxins which may be toxic for
certain insects and other invertebrates including flatworms, mites, nematodes and
protozoa. The ability to synthesize parasporal bodies is plasmid borne. There is little
correlation between serotype and insecticidal toxicity.
Although numerous strains are toxic to invertebrates, this property has not been
demonstrated in many other strains. Natural epizootics do not seem to occur, and it
has been suggested that the natural habitat of this organism is soil.

B. thuringiensis has been implicated in cases of gastroenteritis and wound, burn and
ocular infections.
Serovar
H antigen
Serovar
H H antigen
Serovar
H antigen
thuringiensis
1
tochigiensis
19
higo
44
finitimus
2
yunnanensis
20a, 20b
roskildiensis
45
alesti
3a, 3c
pondicheriensis
20a, 20c
chanpaisis
46
kurstaki
3a, 3b, 3c
colmeri
21
wratislaviensis
47
sumiyoshiensis
3a, 3d
shandongiensis
22
balearica
48
fukuokaensis
3a, 3d, 3e
japonensis
23
muju
49
sotto
4a, 4b
neoleonensis
24a, 24b
navarrensis
50
kenyae
4a, 4c
novosibirsk
24a, 24c
xiaguangiensis
51
galleriae
5a, 5b
coreanensis
25
kim
52
canadensis
5a, 5c
silo
26
asturiensis
53
entomocidus
6
mexicanensis
27
poloniensis
54
aizawai
7
monterrey
28a, 28b
palmanyolensis
55
morrisoni
8a, 8b
jegathesan
28a, 28c
rongseni
56
ostriniae
8a, 8c
amagiensis
29
pirenaica
57
nigeriensis
8b, 8d
medellin
30
argentinensis
58
tolworthi
9
toguchini
31
iberica
59
darmstadiensis
10a, 10b
cameroun
32
pingluonsis
60
londrina
10a, 10c
leesis
33
sylvestriensis
61
toumanoffi
11a, 11b
konkukian
34
zhaodongensis
62
kyushuensis
11a, 11c
seoulensis
35
bolivia
63
thompsoni
12
malaysiensis
36
azorensis
64
pakistani
13
andaluciensis
37
pulsiensis
65
israelensis
14
oswaldocruzi
38
graciosensis
66
dakota
15
brasiliensis
39
vazensis
67
indiana
16
huazhongensis
40
thailandensis
68
tohokuensis
17
sooncheon
41
pahangi
69
kumamotoensis
18a, 18b
jinghongiensis
42
 
 
yosoo
18a, 18c
guiyangiensis
43
 
 
Bichemical characters cannot be used to differentiate between or within serovars.


B. thuringiensis serovars by H antigens:
Bacillus thuringiensis
Biochemical characters
Bacillus thuringiensis colonies on Sheep Blood Agar;
beta-hemolysis
Taxonomy
Morphology
Cultural characteristics
Ecology
Pathogenicity
References
Phylum Firmicutes, Class Bacilli, Order Bacillales, Family Bacillaceae, Genus Bacillus, Bacillus thuringiensis  Berliner (1915)
Synonym:
Bacillus cereus var. thuringiensis Smith, Gordon and Clarck (1952).
Hystorical synonyms:
B. cereus var. alesti  Toumanoff and Vago (1951), B. dendrolimus Talalaev (1956), B. entomocidus var.
entomocidus
Heimpel and Angus (1958), B. entomocidus var. subtoxicus Heimpel and Angus (1958), B. ephestiae ( Metalnikov and
Chorine ,1929) Steinhaus (1949),
B. finitimus Heimpel and Angus (1958), B. soto Metalnikov and Chorine (1927), B. bombycis
Macchiati (1891),
B. anagastae Heimpel (1967), B. tolworthi de Barjac and Bonnefoi (1968), B. darmstadiensis Krieg, de Barjac and
Bonnefoi (1968),
B. toumanoffii Krieg (1969), B. morrisoni de Barjac and Bonnefoi (1968), B. aizawai Hempel (1967), B. pacificus
Hempel (1967),
B. galleriae Hempel (1967), B. kenyae de Barjac and Bonnefoi (1967), B. amuscatoxicus Hempel (1967).

Phenotypically very close to other members of the Bacillus cereus group:
Bacillus anthracis, Bacillus mycoides, Bacillus
pseudomycoides, Bacillus cereus
and Bacillus weihenstephanensis. Genetic evidence supports the recognition of members of the
Bacillus cereus group as one species, but practical considerations (virulence characters) argue against such a move.
Bacillus
thuringiensis
is distinguished by its characteristic parasporal crystals. Smith et al. (1952) and Gordon et al. (1973) considered
Bacillus thuringiensis to be a variety of Bacillus cereus.
Bacillus thuringiensis has been divided on the basis of flagellar (H) antigens into 69 serotypes with 13 subantigenic groups, giving a
total of 82 serovars (Lecadet et al., 1999).
Gram positive, 1.1 -1.2 x 3.0-5.0 μm, motile rods. Ellipsoidal, central or paracentral
spore, not deforming the sporangia appreciably. Spores may be cylindrical and may
be positioned subterminally. Spores may lie obliquely in the sporangia. No capsule
present.
Parasporal bodies within the sporangia. These crystalline protein inclusions  may be
bipyramidal, cuboid, spherical to ovoid, flat-rectangular, or heteromorphic in shape.
They are formed outside the exosporium and readily separate from the liberated
spore. They are known as delta-endotoxins or insecticidal crystal proteins.
The bacilli tend to occur in chains. Cells grown on glucose agar produce large
amounts of storage material, giving a vacuolate or foamy appearance.
The presence of  crystals is the major criterion for distinguishing between
B. cereus
and B. thuringiensis.
On agar, colonies are very variable in appearance. They are usually whitish to cream in color, large (2-7 mm in diameter), and vary in
shape from circular to irregular, with entire to undulate, crenate or fimbriate edges; they usually have matt or granular textures.
Sometimes smooth and moist colonies may appear.
Growth temperature  from  10-15 ºC  to  40-45 ºC. Grow in  0-7% NaCl and at pH 5,7 and 7. Allantoin or urate are not required.
Grows on nutrient agar or nutrient broth.
Endospores are widespread in soil and many other environments. The organism has been isolated from all continents, including
Antarctica.
The ability to produce parasporal bodies has been transferred to strains of
B. cereus and B. pumilus and may be lost on subculture.
Grow
s in the presence of lysozyme 0.001%.
  1. Gordon R.E., Haynes W.C., Pang C.H. (1973) – The genus Bacillus . Agriculture Handbook No. 427, U.S.D.A., Washington D.C.
  2. Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Murray R.G.E., Niven C.F., Ravin A.W., Stanier R.W. ( 1974) –  
    Bergey’s Manual of Determinative Bacteriology, Eight Edition, The Williams & Wilkins Company, Baltimore.
  3. Logan N. A., 2005. Bacillus anthracis, Bacillus cereus, and other aerobic endospore-forming bacteria. In: Topley & Wilson’s
    Microbiology & Microbial Infections, 10th Edition, Edited by Boriello S.P., Murray P.R., Funke G, Bacteriology, vol. 2, 922-952.
  4. N.A. Logan and P. De Vos, 2009. Genus I. Bacillus Cohn 1872. In: (Eds.) P.D. Vos, G. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A.
    Rainey, K.-H. Schleifer, W.B. Whitman. Bergey’s Manual of Systematic Bacteriology, Volume 3: The Firmicutes, Springer, 21-127.
  5. Lecadet, M.M., E. Frachon, V. Cosmao, H. Ripouteau, S. Hamon, P. Laurent & I. Thiéry. 1999. Updating the H-antigen classification
    of Bacillus thuringiensis. J. Appl. Microbiol. 86: 660-672.
Positive results for lysine decarboxylase, arginine dihydrolase, hydrolysis of esculin,
hydrolysis of casein, hydrolysis of gelatin, tyrosine decomposition, acid production
from: glycerol, starch, N-acetyl-D-glucosamine, arbutin, fructose, maltose, ribose and
trehalose.

Negative results for deamination of phenylalanine, beta-galactosidase, ornithine
decarboxylase, hydrolysis of urea, oxidase, acid production from: methyl beta-
xyloside, adonitol, amygdalin, D- or L-arabitol, dulcitol, erythritol, D- or L-fucose,
galactose, beta-gentiobiose, gluconate, meso-inositol, inulin, 2- or 5-ketogluconate,
lactose, lyxose, melezitose, melibiose, raffinose, rhamnose, sorbitol, sorbose and
xylitol.

Variable results for acidification of salicin, cellobiose and sucrose.
(c) Costin Stoica
Antibiogram
Encyclopedia
Culture media
Biochemical tests
Stainings
Movies
Articles
Identification
Software
R E G N U M
PROKARYOTAE
Previous page