#
Serovar
H antigen
Resource
1
thuringiensis
1
Berliner 1915, Heimpel and Angus 1958
2
finitimus
2
Heimpel and Angus 1958
3
alesti
3a, 3c
Toumanoff and Vago 1951, Heimpel and Angus 1958
4
kurstaki
3a, 3b, 3c
de Barjac and Lemille 1970
5
sumiyoshiensis
3a, 3d
Ohba and Aizawa 1989
6
fukuokaensis
3a, 3d, 3e
Ohba and Aizawa 1989
7
sotto
4a, 4b
Ishiwata 1905 ; Heimpel and Angus 1958
8
kenyae
4a, 4c
Bonnefoi and de Barjac 1963
9
galleriae
5a, 5b
Shvetsova 1959, de Barjac and Bonnefoi 1962
10
canadensis
5a, 5c
de Barjac and Bonnefoi 1972
11
entomocidus
6
Heimpel and Angus 1958
12
aizawai
7
Bonnefoi and de Barjac 1963
13
morrisoni
8a, 8b
Bonnefoi and de Barjac 1963
14
ostriniae
8a, 8c
Ren et al. 1975
15
nigeriensis
8b, 8d
Weiser and Prasertphon 1984
16
tolworthi
9
Norris 1964, de Barjac and Bonnefoi 1968
17
darmstadiensis
10a, 10b
Krieg de Barjac and Bonnefoi 1968
18
londrina
10a, 10c
Arantes et al.
19
toumanoffi
11a, 11b
Krieg 1969
20
kyushuensis
11a, 11c
Ohba and Aizawa 1979
21
thompsoni
12
de Barjac and Thompson 1970
22
pakistani
13
de Barjac, Cosmao Dumanoir, Shaik and Viviani 1977
23
israelensis
14
de Barjac 1978
24
dakota
15
De Lucca, Simonson and Larson 1979
25
indiana
16
De Lucca, Simonson and Larson 1979
26
tohokuensis
17
Ohba, Aizawa and Shimizu 1981
27
kumamotoensis
18a, 18b
Ohba, Ono, Aizawa and Iwanami 1981
28
yosoo
18a, 18c
Lee, H. H. et al. 1995
29
tochigiensis
19
Ohba, Ono, Aizawa and Iwanami 1981
30
yunnanensis
20a, 20b
Wan-Yu, Qi-Fang, Xue-Ping and You-Wei 1979
31
pondicheriensis
20a, 20c
Rajagopalan et al.
32
colmeri
21
De Lucca, Palmgren and de Barjac 1984
33
shandongiensis
22
Wang Ying et al. 1986
34
japonensis
23
Ohba and Aizawa 1986
35
neoleonensis
24a, 24b
Rodriguez-Padilla et al. 1988
36
novosibirsk
24a, 24c
Burtseva, Kalmikova et al. 1995
37
coreanensis
25
Lee H. H. et al. 1994
38
silo
26
de Barjac and Lecadet
39
mexicanensis
27
Rodriguez-Padilla and Galan-Wong
40
monterrey
28a, 28b
Rodriguez-Padilla et al.
41
jegathesan
28a, 28c
Seleena, Lee, H. L. and Lecadet 1995
42
amagiensis
29
Ohba
43
medellin
30
Orduz, Rojas, Correa, Montoya and de Barjac 1992
44
toguchini
31
Hodirev
45
cameroun
32
Jacquemard, 1990 ; Juarez-Perez et al. 1994
46
leesis
33
Lee H. H. et al. 1994
47
konkukian
34
Lee H. H. et al. 1994
48
seoulensis
35
Lee H. H. et al. 1995
49
malaysiensis
36
Ho
50
andaluciensis
37
Aldebis, Vargas-Osuna and Santiago-Alvarez 1996
51
oswaldocruzi
38
Rabinovitch et al. 1995
52
brasiliensis
39
Rabinovitch et al. 1995
53
huazhongensis
40
Dai Jingyuan et al. 1996
54
sooncheon
41
Lee H. H. et al. 1995
55
jinghongiensis
42
Li Rong Sen et al.
56
guiyangiensis
43
Li Rong Sen et al.
57
higo
44
Ohba et al. 1995
58
roskildiensis
45
Hinrinschen, Hansen and Daamgaard
59
chanpaisis
46
Chanpaisaeng
60
wratislaviensis
47
Lonc et al. 1997
61
balearica
48
Caballero et al.
62
muju
49
Seung Hwan Park et al.
63
navarrensis
50
Caballero et al.
64
xiaguangiensis
51
Jian Ping Yan
65
kim
52
Kim et al.
66
asturiensis
53
Aldebis, Vargas-Osuna and Santiago-Alvarez 1996
67
poloniensis
54
Damgaard et al.
68
palmanyolensis
55
Santiago-Alvarez et al.
69
rongseni
56
Li Rong Sen
70
pirenaica
57
Caballero et al.
71
argentinensis
58
Campos-Dias et al.
72
iberica
59
Caballero et al.
73
pingluonsis
60
Li Rong Sen
74
sylvestriensis
61
Damgaard
75
zhaodongensis
62
Li Rong Sen
76
bolivia
63
Ferre-Manzanero et al.
77
azorensis
64
Santiago-Alvarez et al.
78
pulsiensis
65
Khalique F. and Khalique A.
79
graciosensis
66
Santiago-Alvarez et al.
80
vazensis
67
Santiago-Alvarez et al.
81
thailandensis
68
Chanpaisaeng et al.
82
pahangi
69
Seleena and Lee H. L.
Images
Bacillus thuringiensis cells by Gram staining (left) and
spores outside vegetative cells by Malachite green
staining (right)
Insect larvae pathogen (mosquito, Lepidoptera etc.) by toxins synthesis. Used as bio-
pesticide. Some strains of
B. thuringiensis may produce the B. cereus diarrheal toxin.

Delta-endotoxins or insecticidal crystal proteins are protoxins which may be toxic for
certain insects and other invertebrates including flatworms, mites, nematodes and
protozoa. The ability to synthesize parasporal bodies is plasmid borne. There is little
correlation between serotype and insecticidal toxicity.
Although numerous strains are toxic to invertebrates, this property has not been
demonstrated in many other strains. Natural epizootics do not seem to occur, and it
has been suggested that the natural habitat of this organism is soil.

B. thuringiensis has been implicated in cases of gastroenteritis and wound, burn and
ocular infections.
Bichemical characters cannot be used to differentiate between or within serovars.


Bacillus thuringiensis serovars by H antigens:
Bacillus thuringiensis
Biochemical characters
Bacillus thuringiensis colonies on Sheep Blood Agar;
beta-haemolysis
Taxonomy
Morphology
Cultural characteristics
Ecology
Pathogenicity
References
Phylum Firmicutes, Class Bacilli, Order Bacillales, Family Bacillaceae, Genus Bacillus, Bacillus thuringiensis  Berliner (1915)
Synonym:
Bacillus cereus var. thuringiensis Smith, Gordon and Clarck (1952).
Hystorical synonyms:
B. cereus var. alesti  Toumanoff and Vago (1951), B. dendrolimus Talalaev (1956), B. entomocidus var.
entomocidus
Heimpel and Angus (1958), B. entomocidus var. subtoxicus Heimpel and Angus (1958), B. ephestiae ( Metalnikov and
Chorine ,1929) Steinhaus (1949),
B. finitimus Heimpel and Angus (1958), B. soto Metalnikov and Chorine (1927), B. bombycis
Macchiati (1891),
B. anagastae Heimpel (1967), B. tolworthi de Barjac and Bonnefoi (1968), B. darmstadiensis Krieg, de Barjac and
Bonnefoi (1968),
B. toumanoffii Krieg (1969), B. morrisoni de Barjac and Bonnefoi (1968), B. aizawai Hempel (1967), B. pacificus
Hempel (1967),
B. galleriae Hempel (1967), B. kenyae de Barjac and Bonnefoi (1967), B. amuscatoxicus Hempel (1967).

Phenotypically very close to other members of the Bacillus cereus group:
Bacillus anthracis, Bacillus mycoides, Bacillus
pseudomycoides, Bacillus cereus
and Bacillus weihenstephanensis. Genetic evidence supports the recognition of members of the
Bacillus cereus group as one species, but practical considerations (virulence characters) argue against such a move.
Bacillus
thuringiensis
is distinguished by its characteristic parasporal crystals. Smith et al. (1952) and Gordon et al. (1973) considered
Bacillus thuringiensis to be a variety of Bacillus cereus.
Bacillus thuringiensis has been divided on the basis of flagellar (H) antigens into 69 serotypes with 13 subantigenic groups, giving a
total of 82 serovars (Lecadet et al., 1999).
Gram positive, 1.1 -1.2 x 3.0-5.0 μm, motile rods. Ellipsoidal, central or paracentral
spore, not deforming the sporangia appreciably. Spores may be cylindrical and may
be positioned subterminally. Spores may lie obliquely in the sporangia. No capsule
present.
Parasporal bodies within the sporangia. These crystalline protein inclusions  may be
bipyramidal, cuboid, spherical to ovoid, flat-rectangular, or heteromorphic in shape.
They are formed outside the exosporium and readily separate from the liberated
spore. They are known as delta-endotoxins or insecticidal crystal proteins.
The bacilli tend to occur in chains. Cells grown on glucose agar produce large
amounts of storage material, giving a vacuolate or foamy appearance.
The presence of  crystals is the major criterion for distinguishing between
B. cereus
and B. thuringiensis.
On agar, colonies are very variable in appearance. They are usually whitish to cream
in color, large (2-7 mm in diameter), and vary in shape from circular to irregular, with
entire to undulate, crenate or fimbriate edges; they usually have matt or granular
textures. Sometimes smooth and moist colonies may appear.
Growth temperature  from 10-15 ºC to 40-45 ºC. Grows in 0-7% NaCl and at pH 5,7
and 7. Allantoin or urate are not required. Grows on nutrient agar or nutrient broth.
Endospores are widespread in soil and many other environments. The organism has been isolated from all continents, including
Antarctica.
The ability to produce parasporal bodies has been transferred to strains of
B. cereus and B. pumilus and may be lost on subculture.
Grows in the presence of lysozyme 0.001%.
  1. Gordon R.E., Haynes W.C., Pang C.H. (1973) – The genus Bacillus . Agriculture Handbook No. 427, U.S.D.A., Washington D.C.
  2. Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Murray R.G.E., Niven C.F., Ravin A.W., Stanier R.W. ( 1974) –  
    Bergey’s Manual of Determinative Bacteriology, Eight Edition, The Williams & Wilkins Company, Baltimore.
  3. Logan N. A., 2005. Bacillus anthracis, Bacillus cereus, and other aerobic endospore-forming bacteria. In: Topley & Wilson’s
    Microbiology & Microbial Infections, 10th Edition, Edited by Boriello S.P., Murray P.R., Funke G, Bacteriology, vol. 2, 922-952.
  4. N.A. Logan and P. De Vos, 2009. Genus I. Bacillus Cohn 1872. In: (Eds.) P.D. Vos, G. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A.
    Rainey, K.-H. Schleifer, W.B. Whitman. Bergey’s Manual of Systematic Bacteriology, Volume 3: The Firmicutes, Springer, 21-127.
  5. Lecadet, M.M., E. Frachon, V. Cosmao, H. Ripouteau, S. Hamon, P. Laurent & I. Thiéry. 1999. Updating the H-antigen classification
    of Bacillus thuringiensis. J. Appl. Microbiol. 86: 660-672.
Positive results for lysine decarboxylase, arginine dihydrolase, hydrolysis of esculin,
hydrolysis of casein, hydrolysis of gelatin, tyrosine decomposition, acid production
from: glycerol, starch, N-acetyl-D-glucosamine, arbutin, fructose, maltose, ribose and
trehalose.

Negative results for deamination of phenylalanine, beta-galactosidase, ornithine
decarboxylase, hydrolysis of urea, oxidase, acid production from: methyl beta-
xyloside, adonitol, amygdalin, D- or L-arabitol, dulcitol, erythritol, D- or L-fucose,
galactose, beta-gentiobiose, gluconate, meso-inositol, inulin, 2- or 5-ketogluconate,
lactose, lyxose, melezitose, melibiose, raffinose, rhamnose, sorbitol, sorbose and
xylitol.

Variable results for acidification of salicin, cellobiose and sucrose.
(c) Costin Stoica
Antibiogram
Encyclopedia
Culture media
Biochemical tests
Stainings
Movies
Articles
Identification
Software
R E G N U M
PROKARYOTAE
Previous page