Bacillus subtilis spores, Malachite green staining
Bacillus subtilis subsp. spizizenii ATCC 6633
R-type, opaque, gray-white colonies
Bacillus subtilis
Bacillus subtilis cells, Gram staining
Bacillus subtilis - sticky, translucent colonies on
Sheep Blood Agar
Bacillus subtilis - pellicle in liquid medium and
round, opaque colonies on solid medium
Gram positive, 2.0-3.0 / 0.7-0.8 μm, motile, peritrichous flagella. Ellipsoidal or
cylindrical, central or paracentral spore (sometimes subterminal), not deforming  the
vegetative cell. Most strains do not produce significant capsular material in the
laboratory.
Growth temperature from 5-15 ºC to 40-50 ºC. Optimum growth temperature 28-30 ºC.
Grows in 2%, 5% and 7% NaCl. NaCl is not required for growth. On agar media
colonies are round or irregular; surface dull; become thick and opaque; may be
wrinkled (rugose) and may become cream-colored or brown. Features of colonies
vary greatly with composition of the medium. Colonial morphology is variable, within
and between strains, and may give the appearance of a mixed culture.
Pigments, varying from cream through yellow, orange, pink and red, to brown or black,
may be formed on potato or agar media containing glucose; strains forming brown or
black pigment were often formerly called
B. subtilis var. aterrimus. Strains forming
brownish-black pigment on tyrosine, and often formerly called
B. subtilis var. niger,
have been split from
B. subtilis as B. atrophaeus.
In broth produce dull, wrinkled pellicle; little or no turbidity. Growth is active at pH
5.5-8.5 and in 7% NaCl.
B. subtilis subsp. inaquosorum is facultatively anaerobic on TGY agar or broth. Growth
in 10% (w/v) NaCl occurs after 72 h. Growth in the presence of 0.001% (w/v) lysozyme
is variable.
Aerobic, does not grow anaerobically.
Phylum Firmicutes, Class Bacilli, Order Bacillales, Family Bacillaceae, Genus Bacillus, Bacillus subtilis (Ehrenberg) Cohn 1872
Smith et al.,1946. 3 subspecies:
-
B. subtilis subsp. subtilis Nakamura, Roberts & Cohan 1999, phenotypically similar to Bacillus atrophaeus and distinguishable from
that species only by the pigmentation of the latter (brownish-black pigment production on tyrosine agar). Not distinguishable from
B.
mojavensis
, B. subtilis subsp. spizizenii and B. vallismortis by conventional phenotypic tests.
-
B. subtilis subsp. spizizenii Nakamura, Roberts & Cohan 1999, phenotypically indistinguishable from B. subtilis subsp. subtilis, the
type strain was isolated from Tunisian soil.
-
B. subtilis subsp. inaquosorum Rooney, Price, Ehrhardt, Swezey and Bannan 2009. Closely related to B. subtilis subsp. spizizenii,
differentiated by gene sequence analysis, m/z 1120.8 biomarker (MALDI-TOF MS analysis) and by FAME analysis (total cellular
content of the fatty acids C16 : 0 and iso-C17 : 1v10c).

Five serovars based on H-antigens and 29 phagovars using 10 phages are recognized.

Probable species synonyms -
Vibrio subtilis Ehrenberg 1835, Bacillus aterrimus
Lehmann and Neumann 1896, B. mesentericus Trevisan 1889, B. niger Migula 1900,
B. panis Migula 1900, B. vulgatus Trevisan 1889, Tyrothrix minimus Duclaux 1882,
B. nigrificans Fabian & Nienhuis 1934, B. mesentericus hydrolyticus Herman and
Neuschul 1935,
B. natto Sawamura 1906.
Taxonomy
Morphology
Cultural characteristics
Biochemical characters
Ecology
Pathogenicity
References
Spores are widely distributed in nature, especially in different heat-treated materials.
The vegetative growth may occur in numerous vegetal or animal materials, inclusive
in non-acid foods. The vegetative organisms participate in the early stages of the
breakdown of organic matter. Antibiotic producer („Subtiline”).
May accumulate metal ions (aluminium, cadmium, iron and zinc) non-enzymically by
adsorption to their cell surfaces and this can be of importance in waste treatment and
natural environments.
Subspecies
inaquosorum was isolated from desert soil.
Is the causative agent of ropy (slimy) bread.
May produce bacteremia associated with immunosuppression, surgical intervention,
neoplastic disease and trauma. Other cases associated with neoplastic disease
include: fatal pneumonia and bacteremia, a septicemia and an infection of a necrotic
axillary tumour in breast cancer patients; breast prosthesis and ventriculo-atrial shunt
infections; endocarditis in a drug abuser; meningitis following a head injury;
cholangitis associated with kidney and liver disease; and isolations from
dermatolymphangioadenitis associated with filarial lymphedema, and from surgical
wound drainage sites.
Bacillus subtilis has been implicated in food-borne illness: vomiting with
accompanying diarrhea and the implicated foods were often prepared dishes in
which meat or fish were served with cereal-based components such as bread, pastry,
rice or stuffing.
Bacillus subtilis has also been associated with cases of bovine mastitis and of ovine
abortion.
  1. Gordon R.E., Haynes W.C., Pang C.H. (1973) – The genus Bacillus. Agriculture Handbook No. 427, U.S.D.A., Washington D.C.
  2. Buchanan R.E., Gibbons N.E., Cowan S.T., Holt J.G., Liston J., Murray R.G.E., Niven C.F., Ravin A.W., Stanier R.W. ( 1974) –  
    Bergey’s Manual of Determinative Bacteriology, Eight Edition, The Williams & Wilkins Company, Baltimore.
  3. Bîlbîie V., Pozsgi N., 1985, Bacteriologie Medicală, vol.ll, Ed. Medicală, Bucureşti.
  4. Buiuc D., Negut M. , 2009. Tratat de Microbiologie Clinica, editia a III-a, Editura Medicala, Bucuresti.
  5. N.A. Logan and P. De Vos, 2009. Genus I. Bacillus Cohn 1872. In: (Eds.) P.D. Vos, G. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A.
    Rainey, K.-H. Schleifer, W.B. Whitman. Bergey’s Manual of Systematic Bacteriology, Volume 3: The Firmicutes, Springer, 21-127.
  6. Rooney A.P., Price N.P.J., Ehrhardt C., Swezey J.L. and Bannan J.D., 2009. Phylogeny and molecular taxonomy of the Bacillus
    subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. IJSEM 59, 2429-2436.
Positive results for beta-galactosidase, catalase, esculin hydrolysis, starch hydrolysis,
Voges-Proskauer reaction, reduction of nitrate to nitrite, decomposition of casein, acid
production from glucose, mannose, glycerol, glycogen, salicin, D-xylose, arbutin,
cellobiose, fructose, beta-gentibiose, meso-inositol, maltose, raffinose, ribose, sorbitol,
sucrose, trehalose and mannitol.

Negative results for hydrolysis of  hippurate, arginine dihydrolase, degradation of
tyrosine, deamination of phenylalanine, lysine decarboxylase, ornithine decarboxylase,
acid production from adonitol, D-arabinose, D-arabitol, L-arabitol, dulcitol, erythritol,
D-fucose, L-fucose, gluconate, 2-ketogluconate, 5-ketogluconate,  lyxose, melezitose,
rhamnose, sorbose, xylitol and L-xylose.

Variable results for utilization of citrate as a source of carbon (depending on used
method - admin note), oxidase, acid production from lactose, inulin and galactose.
(c) Costin Stoica
Antibiogram
Encyclopedia
Culture media
Biochemical tests
Stainings
Images
Movies
Articles
Identification
Software
R E G N U M
PROKARYOTAE
Previous page
Back