Castellaniella defragrans
|
Taxonomy
Morphology
Cultural characteristics
Biochemical characters
Ecology
Pathogenicity
References
Phylum Proteobacteria, Class Betaproteobacteria, Order Burkholderiales, Family Alcaligenaceae, Genus Castellaniella,
Castellaniella defragrans (Foss et al. 1998) Kampfer et al. 2006.
Old synonym: Alcaligenes defragrans Foss et al. 1998.
Gram-negative coccobacilli, 0.3-0.8 x 1.3-2.0 μm. Motile by peritrichous flagella. Non-
spore-forming.
Colonies on nutrient agar are nonpigmented. Facultatively anaerobic. Metabolism is
strictly oxidative. Oxygen, nitrate, nitrite, or dinitrogen oxide can serve as electron
acceptor. Good growth occurs after 24 h incubation on nutrient agar at 25-30 ºC.
When grown on monoterpene and nitrogen, no vitamins are needed, and growth
occurs at 15-40 ºC, pH 5.9-8.4 (optimum 6.3-7.8).
Isolated from activated sludge and a forest ditch.
Undetermined.
- Hans-Jurgen Busse and Georg Auling: Genus I. Alcaligenes Castellani and Chalmers 1919, 936AL in: Bergey's Manual of
Systematic Bacteriology, vol. 2, part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, George M. Garrity (Editor-in-Chief),
2005, 653-658.
- Kampfer (P.), Denger (K.), Cook (A.M.), Lee (S.T.), Jackel (U.), Denner (E.B.M.) and Busse (H.J.): Castellaniella gen. nov., to
accomodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov.
and Castellaniella denitrificans sp. nov. Int. J. Syst. Evol. Microbiol., 2006, 56, 815-819.
- Liu (Q.M.), Ten (L.N.), Im (W.T.) and Lee (S.T.): Castellaniella caeni sp. nov., a denitrifying bacterium isolated from sludge of a
leachate treatment plant. Int. J. Syst. Evol. Microbiol., 2008, 58, 2141-2146.
- Kim (S.J.), YOO (S.H.), Weon (H.Y.), Kim (Y.S.), Anandham (R.), Suh (J.S.) and Kwon (S.W.): Paralcaligenes ureilyticus gen. nov.,
sp. nov. isolated from soil of a Korean ginseng field. J. Microbiol., 2011, 49, 502-507.
Positive results for arginine dihydrolase, esterase lipase (C8), gelatin hydrolysis, nitrate reduction and urease (negative in API 20
NE). Monoterpenes are degraded.
Can utilize: acetate, L- and beta-alanine, butyrate, 3-methylbutyrate, cis-aconitate, 4-aminobutyrate, citrate, ethanol, fumarate,
glutarate, glutamate, L-ornithine, DL-3-hydroxybutyrate, DL-lactate, L-malate, 2-oxoglutarate, pyruvate, hexanoate, heptanoate,
octanoate, propionate, succinate, valine, L-aspartate, L-leucine, L-proline and L-serine.
Negative results for acid and alkaline phosphatase,
No acid production from: glucose, lactose, sucrose, D-mannitol, dulcitol, salicin, adonitol, inositol, sorbitol, L-arabinose, raffinose,
rhamnose, maltose, D-xylose, trehalose, cellobiose, methyl D-glucoside, erythritol, melibiose, D-arabitol & D-mannose.
No utilization of: adipate, ascorbate, azelate, D- and L-arabinose, L-arbutin, adonitol, trans-aconitate, cyclohexanol, D-cellobiose,
D-fructose, formate, D-glucose, D-galactose, N-acetylgalactosamine, N-acetylglucosamine, L-histidine, itaconate, meso-inositol,
metaconate, methanol, D-maltose, D-mannose, maltitol, D-mannitol, phenylalanine, putrescine, pimelate, L-rhamnose, D-ribose,
D-sorbitol, D-saccharose, salicin, sebacate, suberate, D-trehalose, L-tartrate, D-xylose, cyclohexane-1,2-diol, cyclohexane-1,4-diol,
decane, hexadecane, heptamethylnonane, cyclohexane, benzoate, toluene, 2,6-dimethyloctane, 3,7-dimethyl-1-octene,
(-)-beta-citronellene, 3,7-dimethyloctanol-1, (-)-beta-citronellol, geraniol, nerol, linalol, valeric acid, 2- and 5 ketogluconate.
Variable utilization of gluconate and L-arginine. Contradictory results for L-serine utilization.
(c) Costin Stoica